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Abstract. Droughts and abnormal heavy rains have frequently occurred in 
Japan due to the effects of climate change in recent years, and flexible 
operations that maximize the functions of dams are required. Especially in 
cold snowy regions, snowmelt water is stored in a dam to cover water 
demand from early spring to early summer, but during the snowmelt season, 
a sudden rise in temperature and heavy rain could cause large-scale floods. 
Therefore, the highly accurate prediction of dam inflow during the snowmelt 
season is extremely important from the viewpoint of effective use of water 
resources and prevention of snowmelt floods. On the other hand, in recent 
years, research utilizing Artificial Intelligence (AI) has also been promoted 
in the hydrological field. This study clarified the problems of the 
conventional physical model (rainfall runoff model) and the prediction 
model by AI for the inflow of the dam during the snowmelt season in order 
to support efficient dam management. Then, by constructing a semi-physical 
model that complements the problems of the physical model and the AI 
model, we developed a more accurate model for predicting the inflow of 
snowmelt water during the snowmelt season compared to the single model. 

Résumé. Ces dernières années, le Japon a connu de fréquentes 
sécheresses et pluies torrentielles dues aux effets du changement 
climatique ; d’où l’importance d’une gestion souple exploitant au 
maximum les fonctions des barrages, en particulier dans les régions 
froides et enneigées où l’eau issue de la fonte des neiges est stockée dans 
des barrages pour couvrir les besoins hydriques du début du printemps 
aux premiers jours d’été. En effet, un brusque redoux et de fortes pluies 
peuvent entraîner des crues majeures au moment de la fonte. Du point 
de vue de la valorisation des ressources en eau et de la prévention des 
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inondations, il est ainsi essentiel de prévoir avec une grande précision la 
quantité d’eau arrivant dans les barrages pendant cette période. Or, dans 
le domaine de l’hydrologie aussi, les recherches récentes mettent à profit 
l’Intelligence Artificielle (IA). Cette étude, qui vise à favoriser une 
gestion plus efficace des barrages, a mis en évidence les limites du 
modèle physique traditionnel (ruissellement des eaux de pluie) et du 
modèle de l’IA pour ce type de prédiction. En construisant un modèle 
semi-physique capable de pallier les insuffisances de ces deux modèles, 
nous avons développé un modèle prédictif plus précis que chacun de ces 
modèles isolés.  

1 Introduction 
The regions of Ishikari, Sorachi, and Kamikawa of Hokkaido, Japan (Figure 1.), which are 
home to rivers such as the Ishikari and the Teshio as well as the Jozankei Dam, have 
topographical characteristics that bring the regions some of the highest snowfall in Hokkaido. 
These rivers serve as an important source of water for agricultural and other uses from spring 
to summer. Dam inflow during the snowmelt season is affected by the temperatures, solar 
radiation, and precipitation. After infiltrating into and being stored in the deposited snow and 
the ground, snowmelt water runs into rivers. It reaches a dam after a lapse of time which 
corresponds to the length of the main stream. As a result of such a snowmelt event, the dam 
inflow is characterized by diurnal variations in the absence of precipitation, while it increases 
at a level greater than the amount of precipitation when it rains. It is important to have 6-hour 
inflow prediction for flood control, or 72-hour prediction when taking time-delay 
phenomenon into account. 

As a means to make predictions about the series of occurrences from snowmelt events to 
dam inflow, a physical model that combines a model to calculate snowmelt (heat balance 
method) with a rainfall-runoff model has traditionally been used. The predictive accuracy of 
this model cannot necessarily be considered great, however, as it involves a number of 
processes that are not well defined or easy to observe, such as the phenomena of infiltration 
and storage, as well as uncertain factors such as parameter settings for individual models. 

This study aimed to develop an ideal model to predict snowmelt by building, and 
comparing the predictive accuracy of, different methods including a physical model, AI such 
as recurrent neural network (RNN) models, and a model that links a physical model with AI. 
While RNN models were highly effective in making short-term predictions, physical models 
in some cases produced more accurate predictions a few days ahead. Physical models, 
however, could be widely off the mark, which indicated possible accuracy issues unless they 
were linked to other technologies such as data assimilation. An approach to use AI to predict 
the initial data for a physical model was also explored, from the standpoint of combining the 
advantages of both a physical model and AI.  

2 Methods 
Models for predicting the inflow of snowmelt water into dam may be divided roughly into 
two categories: (i) prediction of snowmelt runoff at individual locations and (ii) prediction 
of dam inflow. In this study, models of each of the two categories were developed. For the 
latter, a number of different models were developed, including a conventional physical 
model, one using data on snowmelt runoff, and an AI model that uses meteorological data 
that are readily available only. 
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2.1 Acquisition of data 

The data specifications used in this study are provided in Table 1. For precipitation, 
information for spatial distribution of a 14 × 17 grid was available since information collected 
was that of rainfall recorded by the Japan Meteorological Agency for the areas corresponding 
to the relevant catchment areas (Figure 1.). 

The energy balance is the sum of total solar radiation, reflected solar radiation, and 
radiation. 

 
Table 1. Data specifications. 

St. Observation items Unit 
 

A Energy balance W/m2  
A Surface temperature ﾟ C  
A Wind velocity m/s  
A Tenperature ﾟ C  
A Humidity %  
A snow depth cm  
A snowmelt mm  
B Dam inflow m3/sec  

 

 
Fig. 1. Location maps (Grid: 1-km mesh). Station A and B are observation points. The color indicates 
altitude. 
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2.2 Development of a model to predict space-time distribution of snowmelt 
runoff 

Data for snowmelt runoff were available in the form of actual measurements taken at 
driftwood disposal facilities, which is one of the observation stations of the Civil Engineering 
Research Institute for Cold Region. Other relevant data such as those on snow depth and heat 
balance were also obtained. These data were used to build a model to predict snowmelt 
runoff. 

2.2.1 Characteristics of data on snowmelt runoff 

Samples of data for snowmelt runoff and other relevant data from the driftwood disposal 
facilities are illustrated in Figure 2. Data for precipitation, snowmelt energy, and snowmelt 
runoff are shown in the form of contour plots with time on the vertical axis for the purpose 
of visualizing diurnal shifts in time. The snowmelt energy was calculated based on literature 
[1,2], by using the heat balance to estimate the amount of energy used to melt snow. 

 
Snow depth 

(m) 

 

Precipitation 
(mm/h) 

 

Snowmelt 
energy 

(W/m2) 
 

*calculated by 
Literature [2] 

 

Snowmelt 
runoff 

(mm/h) 

 

 Horizontal axis represents date; vertical axis for the contour plots (2nd-4th 
charts) represents time of the day (0:00–23:00).  

Fig. 2. Data on snowmelt runoff (samples). 
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The smaller the snow depth was, the higher the diurnal snowmelt runoff was. Finally, as 
the snow depth became zero, so did the snowmelt runoff. It was also shown that there were 
time delays with the snowmelt energy and snowmelt runoff, with the time delay being smaller 
as the snow depth became smaller for both the snowmelt energy and snowmelt runoff. 

Based on these characteristics, a snowmelt event has been depicted in a simplified manner 
as shown in Figure 3. for the purpose of modelling. In Phase 1, where the snow depth is great, 
melting water would travel over a long distance passing through the snowpack before being 
ultimately observed as a snowmelt volume. This creates a large time delay between the point 
where snow starts melting (i.e. the snowmelt energy is at its peak) and the point where it is 
actually observed as runoff. Information on the amount of snowmelt energy alone cannot 
explain seasonal fluctuations in the rates of snowmelt runoff, either. For this reason, the 
influences of reductions in the water runoff, such as snowmelt water becoming frozen again 
over the course of its traveling through a snowpack, were also taken into account in the 
model, relative to the snow depth. This means that the greater the snow depth is, the lower 
the snowmelt runoff becomes, relative to the amount of melting water.  

On the other hand, in Phase 3, where there is little snowpack remaining, the response of 
runoff to the start of snow melting becomes quicker due to the effects of solar radiation, etc. 
However, as the amount of snow, or the source of the runoff is small, the runoff is inevitably 
limited to low levels. 

It is only natural that between Phase 1 and Phase 3 outlined above, there emerges another 
stage, or Phase 2, where the runoff is the highest. Phase 2 is the stage where the rates of 
snowmelt runoff are the highest when the snow depth is such that there is an ample amount 
of snowmelt runoff while the influences of reductions are relatively small. 

An outline of the relationship between snow depth and snowmelt runoff, summarized 
using the actual measurements, demonstrates that the smaller the snow depth is, the higher 
the snowmelt runoff also is, as shown in the scatter plot (Figure 3., right). 

 

 
Fig. 3. Relationship between measured snow depths (diurnal mean) and snowmelt runoff (diurnal total). 

2.2.2 Modelling that takes snowmelt events into account 

Based on the simplified depiction of snowmelt events shown in Figure 4, a model to predict 
snowmelt runoff was developed. Since it was possible to make rough estimations of spatial 
distribution of the snow depth based on data on elevation, etc., spatial distribution of the 
snowmelt runoff was estimated as well based on the information on the spatial distribution 
of the snow depth. 
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Based on literature [1], a box model representing snow accumulation was built with the 
data for the snowmelt energy (QM) and precipitation used as inputs, and using this, a model 
that represents time delays was built. This latter model is implemented using TensorFlow, a 
deep learning library, as a convolution neural network (CNN) that uses mechanisms called 
Attention. Attention mechanisms serve a role of expressing how large a time delay is 
expected with which a quantity of melting water is to be counted as a snowmelt runoff, by 
referring to the actual measurements of snow depth. This allows to present the results of a 
prediction in a manner that visualizes how large a time delay would be depending on the 
situation, while maintaining the water balance. 

 

 
Fig. 4. Overview of state space model for predicting snowmelt runoff (Snowmelt Runoff Model). 

2.3 Prediction of dam inflow 

Several potential models for predicting dam inflow were developed using the spatial 
distribution of snowmelt runoff that was obtained using the model in Section 2.2 above. 
Issues with the different methods were identified by comparing the predictive accuracy of 
these models. 

2.3.1 Physical model 

Firstly, a conventional physical model was built as a baseline. With use of the data on the 
spatial distribution of snowmelt runoff, a water circulation model of the catchment areas was 
built. The computational grid is as shown in Figure 2.1. Flow paths were drawn according to 
elevation, to make a model where snowmelt runoff flows downstream along the flow paths. 
An overview of the model is provided in Figure 2.5. 

Snowmelt runoff model consists of 3 types of models, i) Snowmelt model, ii) Snowpack 
infiltration model, iii) Runoff model. i) The snowmelt model is based on the heat balance 
method (Kondo & Yamazaki, 1990 [2]), and taking into account influences of the vegetation. 
ii) The snowpack infiltration model is based on the single-valued linear function of storage 
(Nakatsugawa et al, 2004 [3]); Darcy's law was applied to derive the flow of water through a 
snowpack. iii)  The runoff model is based on the two-tank storage function model (Baba et 
al, 2001 [4]); the runoff process is separated into two components: surface and subsurface 
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flow and groundwater flow. Data inputs is meteorological observation data from the 
observation station (Temperature, Snow depth, Precipitation, Sunlight, Solar radiation, Wind 
speed, Relative humidity). 

2.3.2 RNN-based models 

As a representative example of AI models, a predictive model was built based on the RNN 
(Long Short-Term Memory (LSTM)) [5], which is suited to representing cumulative effects 
on a time-series basis. 

RNN model was developed: a model to make predictions based solely on meteorological 
data that are readily available (snow depth, precipitation, and temperatures). An overview of 
the models is provided in Figure 5. 
 

 
Condition: snow depth, precipitation, and temperatures  

Fig. 5. Overview of RNN-based models. 

2.3.3 Model that utilizes AI to estimate initial values 

Physical models behave in a manner that is bound by the laws of physics such as those for 
water balance and water movement. Therefore, predictions made based on such a model, for 
a scenario of future global warming for instance, are reliable to a certain degree. Making a 
prediction by freely incorporating actual measurements of the dam inflow, such as AI-based 
prediction, on the other hand, is not straightforward, and this requires the use of technologies 
such as data assimilation.  

AI-based prediction is advantageous in that it allows for users to make the most of 
available data and build a predictive model by freely modifying various elements of its 
design. An RNN model, for instance, is capable of using the actual dam inflow as the starting 
point and making a direct prediction of how it will shift from then on; it can make short-term 
predictions with a very high level of accuracy. On the other hand, its predictive performance 
is greatly dependent on the data that have been used for its learning, which makes it generally 
difficult for it to make a prediction of a scenario that has not been covered in the data it used 
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for learning (e.g. a prediction of the dam inflow in the case of an extreme weather event 
associated with global warming). 

In short, physical models and AI each has their own strong areas. With an aim to take 
advantage of only the benefits of each type, the authors set out to implement a new physical 
model capable of launching a prediction based on the current dam inflow, as is the case with 
an RNN model. 

Water levels for individual grids in a physical model are essentially a piece of information 
on an accumulation of the past water inflows and outflows. Specifically, if one is to obtain 
the correct calculation for a given time point, it is necessary to perform preconditioning for 
a certain period of time, and it is not possible to start with a given dam inflow to make a 
calculation as it would be the case with an RNN model. 

Taking this into consideration, a model was developed which used AI to make predictions 
of the water levels that are stocked in individual grids to achieve a given dam inflow, allowing 
for computation to be launched at any time point. An overview of the model is provided in 
Figure 6. If the data on the past dam inflows are available, this model is designed to use AI 
to predict the initial values for a physical model required for physics calculations using the 
data for the most recent time point available. 

 

 
Fig. 6. Overview of use of AI for estimation of initial values (Initial Value Setting).  

3 Results and Discussion 

3.1 Demonstration of reproducibility of snowmelt runoff prediction model 

Sample predictions of snowmelt runoff made using the snowmelt runoff prediction model 
are presented in Figure 7. The charts are come in pairs; the top charts show the ranges the 
predictions could be in, with gray, blue, and pale blue lines each representing the actual 
measurements, the calculations by the predictive model, and the distribution. 

The bottom charts, meanwhile, are color-coded stacked bar charts that show the length of 
time delay between the point where snow starts melting and the point where it is counted as 
a snowmelt runoff. 

It was demonstration that this model was capable of predicting snowmelt runoff based on 
the snowmelt energy, precipitation, and snow depth. Using the model, the snowmelt runoff 
of the whole space was estimated based on the precipitation and snow depth of the whole 
space. 
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Fig. 7. Predictions of snowmelt runoff as shown in Fig. 4. 

3.2 Comparison of calculations with different dam inflow prediction models 

A comparison of the results of validation of the 6-hour predictions and those of the 72-hour 
predictions made using the different models described in the Method part is presented in 
Figure 8. and Figure 9, respectively. In each chart, gray lines represent the actual 
measurements and blue lines, the predicted values. Predictions are presented at 3-hour 
intervals. 

Data for dam inflow were available for the period between 2008 and 2016. For each of 
the years, predictions were made for the snowmelt season, i.e. from March to May. Data from 
the period between 2008 and 2015 were used for learning, and those for 2016 were used to 
validate the results; the figure shows the results of validation. The meteorological data used 
for prediction were actual measurements; the levels of accuracy of each of the predictive 
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techniques were tested and compared on the assumption that the meteorological forecasts 
were carried out in full. 
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Fig. 8. Validation of dam inflow prediction models (April,2016). 
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Fig. 9. Validation of dam inflow prediction models (May,2016). 

3.3 Comparison of predictive accuracy of different dam inflow prediction 
models 

The Root Mean Square Error (RMSE) and Nash coefficient of the results of validation of 6- 
and 72-hour predictions for 2016 made using the different models described in the Method 
part is presented in Table 2. In general, the smaller RMSW indicates a higher level of 
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predictive accuracy; and the closer to 1 the Nash coefficient is, the higher the level of 
accuracy is, with the Nash coefficient of 0.7 or greater denoting that the model is 
reproducible. 

 
Table 2. Comparison of predictive accuracy of different dam inflow prediction models. 

Model 
RMSE Nash Coefficient 

― 6-hour 
predictions 

72-hour 
predictions ― 6-hour 

predictions 
72-hour 

predictions 
 

Physical 
Model 

 

1.8021   0.9442   

 
RNN 

 
 1.0564 2.4328  0.9696 0.8761 

Ours 
(Initial value 

setting) 
 1.5361 2.4630  0.9479 0.8705 

 
 
The results showed that the physical model retained relatively stable and high levels of 

accuracy even in the predictions. With the 6-hour predictions, meanwhile, the RNN models 
showed high levels of accuracy. 

As the RNN model did not show very high levels of accuracy in the 72-hour predictions, 
it was demonstrated that physical models are more accurate in medium- to long-term 
predictions. 

The model that estimated the initial values, in the meantime, produced predictions that 
were similar to those of the RNN model in the 72-hour predictions, but showed high levels 
of reproducibility in the 6-hour predictions. 

As RNN models are mere autocorrelation models for prediction, they face difficulties in 
making medium- to long-term predictions. They are, on the other hand, capable of using 
actual measurements to make a direct prediction of values that should come next, and can 
often achieve high levels of accuracy in short-term predictions. 

There was no clear advantage in the score, but in mid-May, for example, the model that 
estimated the initial values results appear to be more predictable than the RNN. It can be 
expected that more robust predictions will be possible than RNNs in unknown situations. 

Physical models are capable of making predictions that take into account overall shifts in 
the dam inflow, but not without a period where the predictions are greatly different from the 
actual measurements. 

As one of the techniques that link a physical model with AI, the use of AI to predict the 
initial values for a physical model made it possible for a physical model to make predictions 
based on values that were close to the actual measurements, as is the case with RNN models. 
This model achieved levels of accuracy that combine the strengths of both physical models 
and AI. 

In the future, we will improve the model and aim for more robust long-term prediction. 
Prediction of weather conditions themselves and evaluation of uncertainty of prediction are 
also future issues. 
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Physical models are capable of making predictions that take into account overall shifts in 
the dam inflow, but not without a period where the predictions are greatly different from the 
actual measurements. 

As one of the techniques that link a physical model with AI, the use of AI to predict the 
initial values for a physical model made it possible for a physical model to make predictions 
based on values that were close to the actual measurements, as is the case with RNN models. 
This model achieved levels of accuracy that combine the strengths of both physical models 
and AI. 

In the future, we will improve the model and aim for more robust long-term prediction. 
Prediction of weather conditions themselves and evaluation of uncertainty of prediction are 
also future issues. 

 
 

4 Conclusions 
This study clarified the problems of the conventional physical model (rainfall runoff model) 
and the prediction model by AI for the inflow of the dam during the snowmelt season in order 
to support efficient dam management. 

Physical models behave in a manner that is bound by the laws of physics such as those 
for water balance and water movement. Therefore, predictions made based on such a model, 
for a scenario of future global warming for instance, are reliable to a certain degree. Making 
a prediction by freely incorporating actual measurements of the dam inflow, such as AI-based 
prediction, on the other hand, is not straightforward, and this requires the use of technologies 
such as data assimilation. 

We built models existing physical model, RNN, and unique initial value setting model. 
Then, by constructing a semi-physical model that complements the problems of the physical 
model and the AI model, we developed a model as accurate as RNNs for predicting the inflow 
of snowmelt water during the snowmelt season compared to the single model. 

There was no clear advantage in the score (RMSE and Nash coefficient), but in mid-May, 
for example, the model that estimated the initial values results appear to be more predictable 
than the RNN. It can be expected that more robust predictions will be possible than RNNs in 
unknown situations. 
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