

Yunishigawa Dam

: Concrete gravity dam

The Yunishigawa Dam is a concrete gravity dam and the widest dam along the Kinu River.

: Dam without gates

The emergency spillway has no gate. Flood water is discharged through openings.

Simple structure

The simple design shortened construction time.

Rapid dam body construction

The concrete body was constructed in a brief period of 19 months thanks to more efficient construction.

Yunishigawa Dam Management Branch Office

Kinugawa Integrated Dam Control Office Kanto Regional Development Bureau Ministry of Land, Infrastructure, Transport and Tourism

Address:

Nishikawa 416 Nikko Citv. Tochigi 321-2603 Tel. 0288-78-0184

About Yunishigawa Dam

- Construction started in 1982 and ended in 2012
- Olt controls flood water, supplies water for irrigation, domestic and industrial purposes.

Type: Concrete gravity dam Geology: Lapilli tuff Height: 119m Length: 320m Volume of dam body: 1,060,000 m

Elevation of the dam top:

EL.690m

Catchment area: 102 km² Water surface area : 198km Normal water level: EL. 684m

Minimum operating level: EL.613m

Total storage capacity:

75mil.m

Effective storage capacity:

72 mil m

Flood control capacity: 30mil.m3 Design flood discharge: 850 m³/s Maximum discharge: 100 m³/s Control volume: 810 m³/s Effective water level: 71m

EL.(elevation) is based on Tokyo Peil, the Japanese measuring system of elevation. In Tokyo Peil, mean sea level in Tokyo Bay is equal to 0 (zero) m.

Let's visit other types of dams in the area

- Concrete gravity dams are the most common type of dams in Japan.
- Please visit other dams in the nearby area including Ikari Dam (concrete gravity dam), Kawaji Dam and Kawamata Dam (concrete arch dam).

①Dam body viewed from the observatory

②Reservoir viewed from the crest

 $\ensuremath{\mathfrak{J}}$ Tour participants can look up at the dam body from the toe

(4) Inspection gallery accessible during tour

Emergency spillway

Free overflow type crest (Discharge capacity) 1,800 m³/s

Regular spillway

1 roller gate (Discharge capacity) 100 m³/s

Large and small discharge conduits for water supply

Large discharge conduit 1 jet flow gate (Discharge capacity) 30 m²/s

Small discharge conduit 1 jet flow gate (Discharge capacity) 0.54 m³/s

Water level is kept low to store water inflowing during a typhoon

> Flood Season Control Level

Stores water to supply it to the downstream area

Normal Water Level

